
Geometric Extentions of Neural Processes

Andrew Newberry Carr

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

David Wingate, Chair
Bryan Morse

Michael Goodrich

Department of Computer Science

Brigham Young University

Copyright c© 2020 Andrew Newberry Carr

All Rights Reserved

ABSTRACT

Geometric Extentions of Neural Processes

Andrew Newberry Carr
Department of Computer Science, BYU

Master of Science

Neural Processes (NPs) [19] are a class of regression models that learn a map from a
set of input-output pairs to a distribution over functions. NPs are computationally tractable
and provide a number of benefits over traditional nonlinear regression models. Despite these
benefits, there are two main domains where NPs fail. This thesis is focused on presenting
extensions of the Neural Process to these two areas.

The first of these is the extension of Neural Processes graph and network data which we
call Graph Neural Processes (GNP). A Graph Neural Process is defined as a Neural Process
that operates on graph data. It takes spectral information from the graph Laplacian as inputs
and then outputs a distribution over values. We demonstrate Graph Neural Processes in edge
value imputation and discuss benefits and draw backs of the method for other application
areas.

The second extension of Neural Processes comes in the fundamental training mecha-
nism. NPs are traditionally trained using maximum likelihood, a probabilistic technique.
We show that there are desirable classes of problems where NPs fail to learn. We also
show that this drawback is solved by using approximations of the Wasserstein distance.
We give experimental justification for our method and demonstrate its performance. These
Wasserstein Neural Processes (WNPs) maintain the benefits of traditional NPs while being
able to approximate new classes of function mappings.

Keywords: Optimal Transport, Machine Learning, Graph Laplacian, Neural Networks

ACKNOWLEDGMENTS

I would first like to acknowledge by darling wife AnnaLisa. She pushed me by showing

me what a real Master’s Thesis should look like. I am also grateful to my family for being

willing to listen to me geek out about my research and believing in me, even if I didn’t always

believe in myself.

I also am immensely grateful for David Wingate. He helped me start my journey into

ML in 2016. His guidance, mentorship, technical ability, and enthusiasm were pivotal.

I also want to acknowledge the Applied and Computational Math program at BYU.

The creators, professors, students, and TAs pushed and stretched me in uncomfortable, but

amazing ways. I am forever grateful for the skills and critical thinking abilities I gained in

that program.

Table of Contents

List of Figures vi

List of Tables vii

List of Listings viii

1 Introduction 1

2 Background 3

2.1 Metrics and Measures . 3

2.2 Optimal Transport . 5

2.2.1 Wasserstein Distance . 7

2.2.2 Sinkhorn . 8

2.2.3 Sliced Wasserstein Distance . 9

3 Neural Processes 11

3.1 Conditional Neural Processes . 11

3.2 Neural Process . 13

3.3 Extensions . 14

4 Graph Neural Processes 15

4.1 Introduction . 15

4.2 Background . 16

4.2.1 Graph Structured Data . 16

iv

4.2.2 Graph Neural Networks . 17

4.3 Related Work . 18

4.3.1 Edge Imputation . 18

4.3.2 Bayesian Deep Learning . 19

4.4 Model and Training . 20

4.5 Applications . 22

4.5.1 Results . 23

4.6 Areas for Further Exploration . 25

5 Wasserstein Neural Processes 29

5.1 Introduction . 29

5.2 Wasserstein Neural Processes . 31

5.3 Experiments . 33

5.3.1 Misspecified Models - Linear Regression with Uniform Noise 33

5.3.2 Intractable Likelihoods - The Quantile “g-and-κ” Distribution 34

5.3.3 CelebA tiles as super pixels . 37

5.3.4 Discussion . 38

6 Discussion and Future Work 39

6.1 Graph Neural Processes . 39

6.2 Wasserstein Neural Processes . 39

References 41

v

List of Figures

2.1 Continuous optimal transport theory [64] . 5

2.2 Regularized Sinkhorn . 9

3.1 CNP Architecture . 12

4.1 Graph with imputed edge distributions . 16

4.2 Precision results . 25

4.3 Recall results . 26

4.4 F1-score results . 27

5.1 WNP regression results . 35

5.2 WNP g-and-κ distribution results . 36

5.3 WNP image reconstruction . 38

vi

List of Tables

4.1 GNP experimental results . 28

4.2 Features of the explored data sets . 28

vii

List of Listings

viii

Chapter 1

Introduction

The main problems tackled in this thesis are regression problems where a model is

trained to predict real valued outputs. In traditional linear regression, a set of parameters

is fit to a series of input points, and these parameters can then be used to infer values for

some desired set of target points. The regression in this work is similar, but typically higher

dimensional with a more complex domain. The methods we utilize take some small subset

of input points and predict a distribution over output values. This distribution over output

values can be used to derive confidence intervals, error bars, and other descriptive statistics

about model uncertainty.

A popular class of non-linear regression models, Gaussian Processes (GP), are used

to learn an output distribution over functions by fitting a set of input data. By learning a

distribution over functions, these well studied models are valuable when modeling uncertainty.

However, GPs are O(n3) in the number of data points and therefore scale poorly to problems

with large datasets.

In 2018 a new class of architectures was discovered [18, 19, 34] that generalized

Gaussian Processes using neural methods. The new class of architectures, broadly referred

to as Neural Processes (NP), overcome this scalability problem and are O(n+m) where n

represents the size of input points and m the size of the target points. Intuitively, NPs take a

small set of input data (called context points) and build a compressed representation of that

data. This representation is used, with a larger set of target points, to perform regression.

NPs have been applied to regression problems on tabular data, image completion, and image

1

generation. As mentioned, these models have a number of benefits over traditional GPs,

including scalability and computational complexity. However, despite the success of NPs

there are two cases where both NPs and GPs have poor performance.

First, NPs fail when the data is not Euclidean, for example graph and network data.

These data are ubiquitous in modern data analysis, and are often encountered in biological

systems, social networks, or natural language processing. The ability to perform regression

on graphs is valuable for a number of problems. NPs cannot model this type of relational

data because they were designed to work purely on data in Rd and there is a “type” error

when trying to operate on non-Euclidean data.

Second, NPs can fail when the underlying data generating distribution has an unknown

or intractable likelihood, or when the model’s construction leads to a misspecified likelihood.

This occurs in many image processing problems and other contexts where the exact likelihood

of a distribution is not available, or where the data was not generated by the distribution

specified by the model.

In this work, we present two variants of NPs that address these specific cases. First,

we introduce Graph Neural Processes (GNP) that operate on graph structured data. We use

local spectral information of the graphs, derived from the Laplacian, to modify the input of

standard NPs. We use GNPs to predict weights, via regression, on edges in a graph, and

show they out perform a number of competitive baselines.

Secondly, we introduce Wasserstein Neural Processes (WNP) which use the Wasserstein

distance to overcome training problems associated with maximum likelihood. We analyze the

situations were NPs break and show that WNPs perform well. We also show competitive

performance on a higher dimensional image completion task.

Chapter 2 introduces the background of the Wasserstein distance that will help

understand NPs and our proposed variants. Chapter 3 gives an introduction into NPs.

Chapters 4 and 5 contain our main contributions. Chapter 4 covers GNPs with justification

and experiments while Chapter 5 similarly covers WNPs.

2

Chapter 2

Background

In this chapter we give a formal and rigorous definition of the Wasserstein divergence

and the associated probabilistic and mathematical theories. The goal of this chapter is to lay

the theoretical ground work for the tools utilized in subsequent chapters. Readers can skip

this chapter on first reading if a rigorous theory is not interesting.

Intuitively, the Wasserstein distance gives a measure between two probability distri-

butions. If the distributions are identical, the Wasserstein distance is zero, and as the two

distributions move apart, the distance increases. With some light assumptions about the

embedding space’s cost function, the Wasserstein distance is a true metric.

We leverage these facts and use the Wasserstein distance as a loss function for our

regression tasks. By minimizing the Wasserstein distance while updating parameters of a

model, a number of interesting distributional problems can be solved.

2.1 Metrics and Measures

In the world of mathematics, probability was used and informally defined for hundreds of

years. However, in the 1950’s the foundation of probability was rigorously built from first

principles [23]. One of the main building blocks of probability is the measure and a number

of mechanical tools (e.g., sigma algebra) to give formalism to randomness.

Informally, a measure is a function with certain properties familiar to us (e.g., integral

of the entire probability space is 1) that operates on a probability space. A measure, typically

3

written as µ : Ω 7→ IR, is a real-valued function that we use as a rigorous way to work with

probability distributions.

Formally, a measure is a generalization of length, area, and volume that defines the

mass of some distribution. Let Ω be the sample space which is the set of all possible outcomes

for a process. Then F is the set of events which consist of zero or more outcomes. A

probability space is a triple (Ω, F, P) where P maps events to densities. In a measurable

probability space P will be a measure µ. As one may expect, these three pieces have specific

structure that makes them useful for analysis.

Firstly, the sample space Ω must be non-empty. The events object F must be a

σ−algebra which means it is self inclusive, closed under complements, and closed under

countable unions. Formally, this is summarized in the following:

Ω ∈ F (2.1)

if A ∈ F then we also know (Ω\A) ∈ F (2.2)

if Ai ∈ F for i = 1, 2, · · · then (∪∞i=1) ∈ F (2.3)

Finally, the measure µ must be a probability measure, this implies it behaves similarly

to discrete probability distributions. In other words,

if {Ai}∞i=1 ⊂ F is pairwise disjoint and countable then (2.4)

µ(∪∞i=1Ai) =
∞∑
i=1

µ(Ai) (2.5)

µ(Ω) = 1 (2.6)

This structure on the space gives us a probability space that we can use in a number

of extremely interesting ways. We can now reason rigorously about the shape of distributions,

the distances between these distributions, and properties of the distributions.

4

In general, spaces can be given additional structure through the identification of a

metric. A metric is a distance. It is a function that maps a pair of points in the space to

a single value on the real line. To be considered a metric, however, there are a number of

axioms the function must fulfill.

d(x, y) ≥ 0 (2.7)

d(x, y) = 0 iff x = y (2.8)

d(x, y) = d(y, x) (2.9)

d(x, z) ≤ d(x, y) + d(y, z) (2.10)

Looking forward, we will discuss a natural way to define a metric (distance) over

measures in a probability space. This distance, called the Kantorovich, or Wasserstein,

distance has many applications in applied math, computer vision, and machine learning.

2.2 Optimal Transport

Figure 2.1: Continuous optimal transport theory [64]

As the founder of Optimal Transport theory, Gaspard Monge [47] was interested in

the problem of a worker with a shovel moving a large pile of sand. The worker’s goal is to

erect a target pile of sand with a prescribed shape. The worker wishes to minimize their

overall effort in carrying shovelfuls of sand. Monge formulated the problem as such in 1781

and worked to solve it.

Given two densities of mass f, g ≥ 0 on IRd with unit mass
∫
f(x) dx =

∫
g(y) dy = 1,

find an optimal (minimizing) map T : IRd → IRd which pushes one density onto another in

5

such a way that

∫
A

g(y)dy =

∫
T−1(A)

f(x) dx (2.11)

for any Borel subset A ⊂ IRd such that optimal is considered with respect to the quantity

M(T) =

∫
IRd

|T (x)− x|f(x) dx (2.12)

A physically intuitive interpretation is that of tiny sand particles that have a density

described by f , and move to another configuration given by g in such a way as to minimize

the average displacement across all particles. T (x) represents the transport plan of particles

which describes the motion or destination of one particle that started at x.

More generally, consider a measurable map T : X → Y where mass and density are

preserved:

T#µ(A) = µ(T−1(A)) (2.13)

Then the optimal transport problem as formulated by Monge can be concisely written with

two measurable functions µ, ν as

inf
T#µ=ν

∫
X

c(x, T (x)) dµ(x) (2.14)

for some more general cost function c. In many cases the cost function is taken to be the L1

or L2 norms which each have pros and cons. However, in general the non-linearity of the

relation between the map, measures, and cost function make analysis of this formulation

challenging. Additionally, this formulation requires all mass to go from source to target which

implies that there is no mechanism for partial transportation of mass.

6

In general, progress wasn’t really made on this problem until 1942 when Kantorovich

introduce probabilistic couplings to the problem. Instead of giving the destination T (x)

for each particle, Kantorovich’s formulation gives the number of particles moving between

locations for all pairs (x, y). He did this by introducing a coupling that is called a “transport

plan”:

Π(µ, ν) = {π ∈ P (X × Y) : (πx)#π = µ, (πy)#π = ν} (2.15)

where πx and πy are projections from the product space. These are also often referred to as

the marginals of the coupling.

The goal then in the Kantorovich formulation

W (µ, ν) = inf
π∈Π(µ,ν)

∫ ∫
c(x, y) dπ(x, y) (2.16)

is to find the optimal coupling between to measures.

2.2.1 Wasserstein Distance

Over the years, optimal transport theory has grown into a mature and exciting field [61]

with a number of awards going to those working on particular advances. In particular, the

Wasserstein distance has seen much recent attention due to its nice theoretical properties

and myriad applications [17]. These properties enable the study of distance between two

probability distributions µ, ν for generative modeling.

The p-Wasserstein distance, p ∈ [1,∞], between µ, ν is defined to be the solution to

the original Optimal Transport problem [61]:

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X×Y

dp(x, y) dπ(x, y)

) 1
p

(2.17)

7

where Γ(µ, ν) is the joint probability distribution with marginals µ, ν and dp(·, ·) is the cost

function.

An exciting result of the Wasserstein distance is that the quantity actually defines a

distance (metric) on the space of probability measures. There are many geometric properties

such as geodesics and gradient flow that can be calculated now using this distance.

In general, this distance is expensive to compute. There are, however, a number of

methods used to approximate this distance. Firstly, we recall the Kantorovich-Rubinstein

dual formulation [1, 61]:

W (µ, ν) = sup
||f ||L≤1

Ex∼µ[f(x)]− Ex∼ν [f(x)] (2.18)

where we have let p = 1. It is important to note that the supremum is taken over all of the 1-

Lipschitz functions. From this form emerges an adversarial algorithm for Wasserstein distance

calculation. This is explored in a number of generative adversarial network (GAN) works,

with [22] offering good performance with the addition of a gradient penalty. Additionally, by

using a similar dual form a two-step computation that makes use of linear programming can

be employed to exactly calculate the Wasserstein distance [44]. This method has favorable

performance and is also used in generative modeling with the WGAN-TS[44].

As mentioned, exact computations of the Wasserstein distances are expensive. There-

fore, many approximations have arisen that maintain many of the positive properties of

optimal transport while being significantly more computationally efficient. We present a

small subset of these methods here.

2.2.2 Sinkhorn

Another prominent method used to calculate Wasserstein distance that is much faster to

compute is that of Sinkhorn distances [13]. This method makes use of Sinkhorn-Knopp’s

matrix scaling algorithm to compute the Wasserstein distance. These methods also introduce

8

Figure 2.2: Regularized sinkhorn optimal transport plan between two empirical bimodal
distributions

an entropic regularization term that drastically decreases the complexity of this problem

offering speed ups of several orders of magnitude. Work has been successfully done to create

a differentiable method [20] for using Sinkhorn loss during training of generative models.

In the case of empirical one-dimensional distributions, the p-Wasserstein distance is

calculated by sorting the samples from both distributions and calculating the average distance

between the sorted samples (according to the cost function). This is a fast operation requiring

O(n) operations in the best case and O(n log n) in the worst case with n the number of

samples from each distribution [41]. This simple computation is taken advantage of in the

computation of the sliced Wasserstein distance.

2.2.3 Sliced Wasserstein Distance

The sliced Wasserstein distance is qualitatively similar to Wasserstein distance, but is much

easier to compute since it only depends on computations across one-dimensional distributions

[39]. Intuitively, sliced Wasserstein distance is an aggregation of linear projects from high-

dimensional distributions to one-dimensional distributions where regular Wasserstein distance

9

is then calculated. The projection process is done via the Radon transform [40]. The

one-dimensional projects are defined as

RpX(t; θ) =

∫
X

pX(x)δ(t− θ · x) dx, ∀θ ∈ Sd−1, ∀t ∈ IR (2.19)

Then, by using these one-dimensional projections [7] the sliced Wasserstein distance is defined

as

SWp(µ, ν) =

(∫
Sd−1

Wp(Rµ(·; θ),Rν(·; θ)) dθ
) 1

p

(2.20)

It is important to note that this map SWp inherits its being a distance from the fact that

Wp is a distance. Similarly, the two distances induce the same topology on compact sets

[53]. The integral in (eq. 2.20) is approximated by a Monte Carlo sampling variant of normal

draws on Sd−1 which are averaged across samples:

SWp(µ, ν) ≈

(
1

N

N∑
i=1

Wp(Rµ(·; θi),Rν(·; θi))

) 1
p

(2.21)

10

Chapter 3

Neural Processes

We now turn our attention to Neural Processes. Recall that NPs map a set of context

points and target points to a distribution over output values, non-linearly, for regression

problems. To be more specific, NPs map an input ~xi ∈ IRdx with a target ~yi ∈ IRdy to an

output distribution. This is done by defining a collection of distributions that are realized by

encoding an arbitrary number of context points XC := (~xi)i∈C and their associated outputs

YC . Then an arbitrary number of target points XT := (~xi)i∈T , with their outputs YT , are

used to recover p(YT |XT , YC , XC). This entire process is accomplished using the samples

from P (XC , YC).

3.1 Conditional Neural Processes

While NPs are the general model, to study the main mechanisms at work, we use a simpler

version known as the Conditional Neural Process (CNP). First introduced in [18], Conditional

Neural Processes are a simplified version of Neural Processes and are also used for regression

tasks. CNPs still map inputs ~xi ∈ IRdx and targets ~yi ∈ IRdy to an output distribution.

However, this is now done by defining a collection of conditional distributions by encoding an

arbitrary number of context points (XC , YC) := ((~xi)i∈C , (~yi)i∈C) and conditioning the target

points (XT , YT) := ((~xi)i∈T , (~yi)i∈T), with that encoding, to model the desired distribution.

In other words, the model encodes a set of points XC as input and uses this encoded

representation to condition a set XT for inference. Like GPs, CNPs are invariant to ordering

of context points, and ordering of targets. It is important to note that, while the model is

11

Figure 3.1: Conditional Neural Process Architecture. Traditionally, the data is maximized
under the output distribution. In this work, we use the sliced Wasserstein distance. Also
note that ⊕ is an arbitrary commutative aggregation function and h, g are parameterized
neural networks. As an example, the context/target points could be (x, y) coordinates and
pixel intensities if an image is being modeled.

defined for arbitrary context points C and target points T , it is common practice (which we

follow) to use C ⊂ T .

The context point data is aggregated using a commutative operation ⊕ that takes

elements in some IRd and maps them into a single element in the same space. In the literature,

this is referred to as the rC context vector. We see that rC summarizes the information present

in the observed context points. Formally, the CNP is learning the following conditional

distribution:

P (YT |XT , XC , YC) ⇐⇒ P (YT |XT , rC) (3.1)

In practice, this is done by first passing the context points through a Neural Network hθ to

obtain a fixed length embedding ri of each individual context point. These context point

representation vectors are aggregated with ⊕ to form rC . The target points XT are then

decoded, conditional to rC , to obtain the desired output distribution zi the models the target

outputs yi.

More formally, this process can be defined as:

ri = hθ(~xi) ∀~xi ∈ XC (3.2)

rC = r1 ⊕ r2 ⊕ r3 ⊕ · · · ⊕ rn (3.3)

zi = gφ(~yi|rC) ∀~yi ∈ XT (3.4)

12

3.2 Neural Process

Neural Processes are an extension of CNPs where a parameterized Normal sC := s(xC , yC)

latent path is added to the model architecture. The purpose of this path is to model global

dependencies between context and target predictions [19]. The computational complexity

of the Neural Processes is O(n+m) for n contexts and m targets. Additionally, [19] show

that in addition to being scalable these models are flexible and invariant to permutations in

context points. Many of these benefits are shared in with CNPs, albeit with CNPs showing

slightly worse experimental performance.

With the addition of the latent path, a new loss function is required. The encoder

and decoder parameters are maximized using the ELBO loss:

log p(yT |xT , xC , yC) ≥ Eq(z|sT) [log p(yT |xT , rC , z)]−DKL(q(z|sT)||q(z|sC)) (3.5)

A random subset of context points is used to predict a set of target points, with a

KL regularization term that encourages the summarization of the context to be close to the

summarization of the targets.

Work has been done [34] to explore other aggregation operations such as attention

[3]. These extensions solve a fundamental underfitting problems that plague both CNPs and

NPs. These Attentive Neural Processes (ANP) introduce several types of attention into the

model architecture in place of the neural networks which greatly improves performance at

the cost of computational complexity which was shown to be O(n(n+m)). It is important

to note, however, that the introduction of attention causes the models to train more quickly

(i.e., fewer iterations) which is faster in wall-clock time even if inference is slower. The ANPs

utilize a fundamentally different architecture while still maximizing the ELBO loss in (eq 3.5).

13

3.3 Extensions

The general NP framework is a useful extension and generalization of GPs. Researchers

noticed, however, that a main bottle neck is the commutative aggregation operation. As

such, [34] introduce the Attentive Neural Process which uses attention to combine the encoded

r vectors. Other extensions [45, 49] have also been proposed to improve training and stability.

In this work, we extend the neural process in two distinct ways. Firstly, we design a

mechanism to work on graph structured data. Secondly, we overcome weaknesses in maximum

likelihood learning using Wasserstein distance to learn a larger variety of desirable functional

distributions.

14

Chapter 4

Graph Neural Processes

4.1 Introduction

In this work, we consider the problem of imputing the value of an edge on a graph. This is a

valuable problem when an edge is known to exist, but due to a noisy signal, or poor data

acquisition process, the values on that edge are unknown. We solve this problem using a

proposed method called Graph Neural Processes.

In recent years, deep learning techniques have been applied, with much success, to a

variety of problems. However, many of these neural architectures (e.g., CNNs) rely on the

underlying assumption that our data is Euclidean. However, since graphs do not lie on regular

lattices, many of the concepts and underlying operations typically used in deep learning need

to be extended to non-Euclidean valued data. Deep learning on graph-structured data has

received much attention over the past decade [5, 21, 42, 56, 66] and has show significant

promise in many applied fields [5]. These ideas were recently formalized as geometric deep

learning [9] which categorizes and expounds on a variety of methods and techniques. These

techniques are designed to work with graph-structured data and extend deep learning into

new research areas.

Similarly, but somewhat orthogonally, progress has been made in applications of

Bayesian methods to deep learning [2]. These extensions to typical deep learning give insight

into what the model is learning and where it may encounter failure modes. In this work, we

use some of this progress to impute the value distribution on an edge in graph-structured

data.

15

Figure 4.1: Graph with imputed edge distributions

In this work we propose a novel architecture and training mechanism which we call

Graph Neural Processes (GNP). This architecture is based on the ideas first formulated

in [18] in that it synthesizes global information to a fixed length representation that is then

used for probability estimation. Our contribution is to extend those ideas to graph-structured

data and show that the methods perform favorably.

Specifically, we use features typically used in Graph Neural Networks as a replacement

to the convolution operation from traditional deep learning. These features, when used in

conjunction with the traditional CNP architecture offer local representations of the graph

around edges and assist in the learning of high level abstractions across classes of graphs.

Graph Neural Processes learn a high level representation across a family of graphs, in part

by utilizing these instructive features.

4.2 Background

4.2.1 Graph Structured Data

We define a graph G = (a, V, E) where a is some global attribute1, V is the set of nodes

where V = {vi}i=1:Nv with vi being the node’s attribute, and E is the set of edges where

E = {ek, vk, uk}k=1:Ne where ek is the attribute on the edge, and vk, uk are the two nodes

1typically a member of the real numbers, IR. Our method does not utilize this global attribute.

16

connected by the edge. In this work, we focus on undirected graphs, but the principles could

be extended to many other types of graphs.

4.2.2 Graph Neural Networks

Of all the inductive biases introduced by standard deep learning architectures, the most

common is that we are working with Euclidean data. This fact is exploited by the use

of convolutional neural networks (CNN), where spatially local features are learned for

downstream tasks. If, however, our data is Non-Euclidean (e.g., graphs, manifolds) then

many of the operations used in standard deep learning (e.g., convolutions) no longer produce

the desired results. This is due to the fact that the intrinsic measures and mathematical

structure on these surfaces violates assumptions made by traditional deep learning operations.

There has been much work done recently in Graph Neural Networks (GNN) that operate

on graph-structured inputs [66]. There are two main building blocks of geometric methods

in GNNs: spectral [9] and spatial [15] methods. These methods are unified into Message

Passing Neural Networks, and Non-local Neural Networks. A more thorough discussion of

these topics can be found in [66].

Typically, when using these GNN methods, the input graphs need to be of the

same size. In other words have the same number of nodes and edges. This is because

of the technicalities involved in defining a spectral convolution. However, in the case of

Graph Neural Processes, local graph features are used, which allows one to learn conditional

distributions over arbitrarily sized graph-structured data.

One important concept utilized in the spectral GNN methods is that of the Graph

Laplacian. Typically, the graph Laplacian is defined as the adjacency matrix subtracted

from the degree matrix L = D − A. This formulation, common in multi-agent systems and

algebraic graph theory, hampers the flow of information and does not capture a number of

17

local graph properties [11]. As such, the Normalized Symmetric Graph Laplacian is given as

L = In −D−1/2AD−1/2 (4.1)

where I is the nxn identity matrix and n is the number of nodes connected by an edge. This

object can be thought of as the difference between the average node or edge value on a graph

around a point and the actual node or edge value at that point. This, therefore, encodes

local structural information about the graph itself.

In spectral GNN methods, the eigenvalues and eigenvectors of the graph Laplacian

are used to define convolution operations on graphs. In this work, however, we use the local

structural information encoded in the Laplacian as an input feature for the context points we

wish to encode.

4.3 Related Work

4.3.1 Edge Imputation

In many applications, the existence of an edge is known, but the value of the edge is unknown

(e.g., traffic prediction, social networks). Traditional edge imputation involves generating a

point estimate for the value on an edge. This can be done through mean filling, regression, or

classification techniques [28]. These traditional methods, especially mean filling, can fail to

maintain the variance and other significant properties of the edge values. In [28] they show

“Bias in variances and covariances can be greatly reduced by using a conditional distribution

and replacing missing values with draws from this distribution.” This fact, coupled with the

neural nature of the conditional estimation, gives support to the hypothesis that Graph Neural

Processes preserve important properties of edge values, and are effective in the imputation

process.

18

4.3.2 Bayesian Deep Learning

In Bayesian neural networks, often the goal is to learn a function y = f(x) given some training

inputs X = {x1, · · · , xn} and corresponding outputs Y = {y1, · · · , yn}. This function can be

approximated using a fixed neural network that provides a likely correlational explanation for

the relationship between x and y. There has been work done in this area [65] and there are

two main types of Bayesian Deep Learning. This is not an exhaustive list of all the methods,

but a broad overview of two. Firstly, instead of using point estimates for the parameters θ of

the neural network, a distribution over parameter values is used. In other words, the weights

are modeled as a random variable with an imposed prior distribution. This encodes, a priori

uncertainty information about the neural transformation.

Since the weight values W are not deterministic, the output of the neural network can

also be modeled as a random variable. In this first class a generative model can be learned

based on the structure of the neural network and loss function being used. Predictions from

these networks can be obtained by integrating with respect to the posterior distribution of W

p(y|x,X, Y) =

∫
p(y|x,W) p(W |X, Y) dW. (4.2)

This integral is often intractable in practice. A number of techniques have been proposed in

the literature to overcome [65] this problem.

A second type of Bayesian deep learning is when the output of the network is modeled

as a distribution. This is more common in practice and allows a Bayesian neural network to

encode information about the distribution over output values given certain inputs. This is a

very valuable property of Bayesian deep learning that GNPs help capture.

In the case of Graph Neural Processes, we model the output of the process as a random

variable and learn a conditional distribution over that variable. This fits into the second class

of Bayesian neural networks since the weights W are not modeled as random variables in

this work.

19

4.4 Model and Training

While the hθ and gφ encoder and decoder could be implemented arbitrarily, we use fully

connected layers that operate on informative features from the graph. In GNPs, we use

local spectral features derived from global spectral information of the graphs. Typical graph

networks that use graph convolutions require a fixed size Laplacian to encode global spectral

information; for GNPs we use an chosen fixed size neighborhood of the Laplacian around

each edge.

To be precise, with the Laplacian L as defined in equation (4.1) one can compute

the spectra σ(L) of L and the corresponding eigenvector matrix Λ. In Λ, each column is an

eigenvector of the graph Laplacian. To get the arbitrary fixed sized neighborhood, whose size

is chosen through k, around each node/edge we define the restriction of Λ as

Λ|k = (Λkj) k∈r
1≤j≤m

(4.3)

where k represents a row (or rows) of the matrix and m represents the number of columns.

We call this restriction the local structural eigenfeatures of an edge. These eigenfeatures are

often used in conjunction with other, more standard, graph based features. For example,

we found that the node values and node degrees for each node attached to an edge serve

as informative structural features for GNPs. In other words, to describe each edge we use

the local structural eigenfeatures concatenated with a 4-tuple: (vi, uj, d(vi), d(uj)) where

d : V → IR is a function that returns the degree of a node and vi, ui represent the value of

two nodes whose connecting edge value we wish to impute.

Formally, we define the Encoder hθ, to be a 4-layer fully connected neural network

with ReLU non-linearities. It takes the GNP features from each node pair vi, ui in the set

of context points as input, and outputs a fixed length (e.g., 256) vector. This vector rC is

the aggregation of information across the arbitrarily sampled context points. The Decoder

gφ is also a 4-layer fully connected neural network with ReLU non-linearities. The decoder

20

takes, as input, a concatenation of the rC vector from the encoder and the GNP features

for every node pair vi, ui which constitutes the set of target points. Then, for each edge, the

concatenation of rC and the associated GNP feature vector is passed through the layers of

the decoder until an output distribution is reached. Where the output distribution size is

defined over the number of unique values an edge could take on, which is dataset dependant.

Additionally, as a training choice, we obtain the context points by first defining

a lower bound p0 ∈ [0, 1] and an upper bound p1 ∈ [0, 1] with p0 < p1 as parameters of a

Uniform distribution. Then, the number of context points is p · n where p ∼ unif(p0, p1) and

n = |E|. The context points all come from a single graph, and training is done over a family

of graphs. The GNP is designed to learn a representation over a family of graphs and impute

edge values on a new member of that family.

The loss function L is problem specific. In the CNP work, as mentioned above,

Maximum Likelihood is used to encourage the output distribution of values to match the

true target values. Additionally, one could minimize the Kullback–Leibler, Jensen–Shannon,

or the Earth-Movers divergence between output distribution and true distribution, if that

distribution is known. In this work, since the values found on the edges are categorical we

use the multiclass Cross Entropy with j indexing all classes:

loss(x, class) = − log

(
exp(x[class])∑

j exp(x[j])

)
(4.4)

= −x[class] + log

(∑
j

exp(x[j])

)
(4.5)

We train our method using the ADAM optimizer [35] with standard hyper-parameters. To

give clarity, and elucidate the connection and differences between CNPs and GNPs, we

present the training algorithm for Graph Neural Processes in Algorithm (1).

21

Algorithm 1 Graph Neural Processes. All experiments use nepochs = 10 and default Adam
optimizer parameters

Require: p0, lower bound percentage of edges to sample as context points. p1, corresponding
upper bound. m, size of slice (neighborhood) of local structural eigenfeatures.
Require: θ0, initial encoder parameters. φ0 initial decoder parameters.

1: Let X input graphs
2: for t = 0, · · · , nepochs do
3: for xi in X do
4: Sample p← unif(p0, p1)
5: Assign ncontext points ← p · |Edges(xi)|
6: Sparsely Sample xcpi ← xi|ncontext points

7: Compute degree and adj matrix D, A for graph xcpi
8: Compute L← Incontext points

−D− 1
2AD−

1
2

9: Define F cp as empty feature matrix for xcpi
10: Define F as empty feature matrix for full graph xi
11: for edge k in xi do
12: Extract eigenfeatures Λ|k from L, see eq (4.3)
13: Concatenate [Λ|k; vk;uk; d(vk); d(uk)] where vk, uk are the attribute values at the

node, and d(vk), d(uk) the degree at the node.
14: if edge k ∈ xcpi then
15: Append features for context point to F cp

16: end if
17: Append features for all edges to F
18: end for
19: Encode and aggregate rC ← hθ(F

cp)
20: Decode x̃i ← gφ(F |rC)
21: Calculate Loss l← L(x̃i, xi)
22: Step Optimizer
23: end for
24: end for

4.5 Applications

To show the efficacy of GNPs on real world examples, we performed a series of experiments on

a collection of 16 graph benchmark datasets [33]. These datasets span a variety of application

areas, and have a diversity of sizes; features of the explored datasets are summarized in

Table 4.2. While the benchmark collection has more than 16 datasets, we selected only

those that have both node and edge labels that are fully known; these were then artificially

sparsified to create graphs with known edges but unknown edge labels.

22

We use the model described in Section (4.4) and the algorithm presented in Algo-

rithm (1) and train a GNP to observe p · n context points where p ∈ [.4, .9] and n = |E|. We

compare GNPs with naive baselines and a strong random forest model for the task of edge

imputation. The baselines are commonly used in edge imputation tasks [28]:

• Random: a random edge label is imputed for each unknown edge

• Common: the most common edge label is imputed for each unknown edge

• Local Common: the most common local edge value in a neighborhood is imputed for

each unknown edge

• Random forest: from scikit-learn; default hyperparameters

• Feed forward neural network: constructed with the same number of parameters

and same non-linearities as the GNP, but without the inductive bias

For each algorithm on each dataset, we calculate weighted precision, weighted recall, and

weighted F1-score (with weights derived from class proportions), averaging each algorithm

over multiple runs. Statistical significance was assessed with a two-tailed t-test with α = 0.05.

4.5.1 Results

The results are pictured in Figures (4.2 – 4.4); all of the data is additionally summarized in

Table 4.1. We first note several high-level results, and then look more deeply into the results

on different subsets of the overall dataset.

First, we note that the GNP provides the best F1-score on 14 out of 16 datasets, and

best recall on 14 out of datasets (in this case, recall is equivalent to classification accuracy). By

learning a high-level abstract representation of the data, along with a conditional distribution

over edge values, the Graph Neural Process is able to perform well at this edge imputation

task, beating both naive and strong baselines. The GNP is able to do this on datasets with

as few as about 300 graphs, or as many as about 9000. We also note that the GNP is able to

overcome class imbalance.

23

AIDS. The AIDS Antiviral Screen dataset [51] is a dataset of screens checking tens

of thousands of compounds for evidence of anti-HIV activity. The available screen results

are chemical graph-structured data of these various compounds. A moderately sized dataset,

the GNP beats the RF by a statistically significant (p < 0.001) 7% in average performance

across the three measures.

bzr,cox2,dhfr,er. These are chemical compound datasets BZR, COX2, DHFR and

ER which come with 3D coordinates, and were used by [46] to study the pharmacophore

kernel. Results are mixed between algorithms on these datasets; these are the datasets that

have an order of magnitude more edges (on average) than the other datasets. These datasets

have a large class imbalance. Which means the Common baseline yields around 90% accuracy.

The BZR dataset has 61,594 edges in class 1, and only 7,273 in the other 4 classes combined.

Despite this imbalance, the GNP yields best F1 and recall on 2/4 of these datasets. while the

random forest gives the best precision on 3/4. It may simply be that there is so much data to

work with, and the classes are so imbalanced, that it is hard to find much additional signal.

mutagenicity, MUTAG. The MUTAG dataset [14] consists of 188 chemical com-

pounds divided into two classes according to their mutagenic effect on a bacterium. While

the mutagenicity dataset [31] is a collection of molecules and their interaction information

with in vitro.

Here, GNP beats the random forest by several percent; both GNP and RF are vastly

superior to naive baselines.

PTC *. The various Predictive Toxicology Challenge [25] datasets consist of several

hundred organic molecules marked according to their carcinogenicity on male and female

mice and rats. [25] On the PTC family of graphs, GNP bests random forests by 10-15%

precision, and 3-10% F1-score; both strongly beat naive baselines.

Tox21 *. This data consists of 10,000 chemical compounds run against human nuclear

receptor signaling and stress pathway, it was originally designed to look for structure-activity

relationships and improve overall human health. [16] On the Tox family of graphs, the GNP

24

strongly outperforms all other models by about 20% precision; about 12% F1; and about

10% recall.

Figure 4.2: Experimental precision graph compared with baselines. We see our method
performs achieves a ∼ .2 higher precision on average.

4.6 Areas for Further Exploration

This introduction of GNPs is meant as a proof of concept to encourage further research

into Bayesian graph methods. As part of this work, we list a number of problems where

GNPs could be applied. Visual scene understanding [50] [54] where a graph is formed

through some non-deterministic process where a collection of the inputs may be corrupted,

or inaccurate. As such, a GNP could be applied to infer edge or node values in the scene

to improve downstream accuracy. Few-shot learning [55] where there is hidden structural

information. A method like [32] could be used to discover the form, and a GNP could then

be leveraged to impute other graph attributes.

25

Figure 4.3: Experimental recall graph compared with baselines

Learning dynamics of physical systems [4] [10] [63] [60] [52] with gaps in obser-

vations over time, where the GNP could infer values involved in state transitions.

Traffic prediction on roads or waterways [43] [12] or throughput in cities. The GNP

would learn a conditional distribution over traffic between cities

Multi-agent systems [58] [27][37] where you want to infer inter agent state of

competing or cooperating agents. GNP inference could run in conjunction with other

multi-agent methods and provide additional information from graph interactions.

Natural language processing in the construction of knowledge graphs [8] [48] [24]

by relational infilling or reasoning about connections on a knowledge graph. Alternatively,

they could be used to perform semi-supervised text classification [38] by imputing

relations between words and sentences.

There are a number of computer vision applications where graphs and GNPs could

be extremely valuable. For example, one could improve 3D meshes and point cloud [62]

26

Figure 4.4: Experimental F1-score graph compared with baselines

construction using lidar or radar during tricky weather conditions. The values in the meshes

or point clouds could be imputed directly from conditional draws from the distribution

learned by the GNP.

27

Dataset RF RV CV GNP
P R F1 P R F1 P R F1 P R F1

AIDS 0.69 0.74 0.68 0.60 0.25 0.34 0.53 0.73 0.61 0.76 0.79 0.75
bzr md 0.81 0.88 0.84 0.81 0.25 0.36 0.80 0.89 0.84 0.79 0.89 0.83
cox2 md 0.85 0.90 0.87 0.84 0.25 0.36 0.84 0.91 0.87 0.84 0.92 0.88
dhfr md 0.83 0.90 0.86 0.83 0.25 0.36 0.82 0.91 0.86 0.81 0.90 0.85
er md 0.82 0.90 0.85 0.82 0.25 0.36 0.81 0.90 0.86 0.79 0.89 0.84
mutagenicity 0.79 0.83 0.80 0.72 0.25 0.35 0.69 0.83 0.75 0.81 0.85 0.81
mutag 0.73 0.74 0.73 0.48 0.25 0.31 0.40 0.63 0.49 0.75 0.79 0.76
PTC FM 0.64 0.64 0.62 0.43 0.25 0.31 0.25 0.50 0.33 0.76 0.72 0.72
PTC FR 0.63 0.63 0.61 0.43 0.25 0.31 0.26 0.51 0.34 0.77 0.68 0.69
PTC MM 0.62 0.62 0.61 0.43 0.25 0.31 0.25 0.50 0.34 0.78 0.64 0.64
tox21 ahr 0.61 0.61 0.60 0.47 0.25 0.31 0.36 0.60 0.45 0.81 0.71 0.72
Tox21 ARE 0.61 0.61 0.60 0.46 0.25 0.31 0.34 0.58 0.43 0.81 0.71 0.73
Tox21 AR-LBD 0.61 0.61 0.61 0.47 0.25 0.31 0.36 0.60 0.45 0.82 0.71 0.73
Tox21 aromatase 0.61 0.61 0.61 0.47 0.25 0.31 0.37 0.61 0.46 0.81 0.70 0.72
Tox21 ATAD5 0.61 0.61 0.61 0.46 0.25 0.31 0.35 0.59 0.44 0.81 0.71 0.73
Tox21 ER 0.62 0.60 0.60 0.47 0.25 0.31 0.36 0.60 0.45 0.80 0.71 0.72

Table 4.1: Experimental Results. RF=Random Forest; RV=Random edge label; CV=most
common edge label; GNP=Graph Neural Process. P=precision; R=recall; F1=F1 score.
Statistically significant bests are in bold with non-significant ties bolded across methods.

Dataset |X| ¯|N | ¯|E| | ∪ {ek}|
AIDS 2000 15.69 16.20 3
BZR MD 306 21.30 225.06 5
COX2 MD 303 26.28 335.12 5
DHFR MD 393 23.87 283.01 5
ER MD 446 21.33 234.85 5
Mutagenicity 4337 30.32 30.77 3
MUTAG 188 17.93 19.79 4
PTC FM 349 14.11 14.48 4
PTC FR 351 14.56 15.00 4
PTC MM 336 13.97 14.32 4
Tox21 AHR 8169 18.09 18.50 4
Tox21 ARE 7167 16.28 16.52 4
Tox21 aromatase 7226 17.50 17.79 4
Tox21 ARLBD 8753 18.06 18.47 4
Tox21 ATAD5 9091 17.89 18.30 4
Tox21 ER 7697 17.58 17.94 4

Table 4.2: Features of the explored data sets

28

Chapter 5

Wasserstein Neural Processes

5.1 Introduction

Gaussian Processes (GPs) are nonparametric probabilistic models that are widely used for

nonlinear regression problems. They map an input ~xi ∈ IRdx to an output ~yi ∈ IRdy by

defining a collection of jointly Gaussian conditional distributions. These distributions can be

conditioned on an arbitrary number of context points XC := (~xi)i∈C where C is the context

points and their associated outputs YC . Given the context points, an arbitrary number of

target points XT := (~xi)i∈T for T target points, with their outputs YT , can be modeled

using the conditional distribution P (XT |XC , YC). This modeling is invariant to the ordering

of context points and to the ordering of targets. Formally, they define a nonparametric

distribution over smooth functions, and leverage the almost magical nature of Gaussian

distributions to both solve regression tasks and provide confidence intervals about the solution.

However, GPs are computationally expensive, and the strong Gaussian assumptions they

make are not always appropriate.

Neural Processes (NPs) can be loosely thought of as the neural generalization of GPs.

They blend the strengths of GPs and deep neural networks: like GPs, NPs are a class of

models that learn a mapping from a context set of input-output pairs to a distribution over

functions. Also like GPs, NPs can be conditioned on an arbitrary set of context points, but

unlike GPs (which have quadratic complexity), NPs have linear complexity in the number

of context points [19]. NPs inherit the high model capacity of deep neural networks, which

gives them the ability to fit a wide range of distributions, and can be blended with the latest

29

deep learning best practices (for example, NPs were recently extended using attention [34] to

overcome a fundamental underfitting problem which lead to inaccurate function predictions).

Importantly, these NPs still make Gaussian assumptions; furthermore, the training

algorithm of these Neural Processes uses a loss function that relies on maximum-likelihood

and the KL divergence metric. Recently in the machine learning community there has been

much discussion [26] around generative modeling, and the use of Wasserstein distances. The

Wasserstein distance, a true metric, is a desirable tool because it measures distance between

two probability distributions, even if the support of those distributions is disjoint. The KL

divergence, however, is undefined in such cases (or infinity); this corresponds to situations

where the data likelihood is exactly zero, which can happen in the case of misspecified models.

This raises the question: can we simultaneously improve the maximum likelihood

training of NPs, and replace the Gaussian assumption in NPs with a more general model —

ideally one where we do not need to make any assumptions about the data likelihood?

More formally, in the limit of data, maximizing the expected log probability of the

data is equivalent to minimizing the KL divergence between the distribution implied by a

model Pθ and the true data distribution Q:

θmin KL = arg min
θ
DKL(Q||Pθ)

= arg min
θ
Ex∼Q[logQ(x)− logPθ(x)]

= arg min
θ
−Ex∼Q[log p(x|θ)]

= arg max
θ

lim
N→∞

1

N

N∑
i=1

log(p(xi|θ))

= θMLE

However, if the two distributions Q and Pθ have disjoint support (i.e., if even one data

point lies outside the support of the model), the KL divergence will be undefined (or infinite)

30

due to the evaluation of log(0). Therefore, it has been shown recently [1] that substituting

Wasserstein for KL gives stable performance for non-overlapping distributions in the same

space. This leads to Wasserstein distance as a proxy for the KL divergence interpretation of

maximum likelihood learning.

This new framing is valuable in the misspecified case where data likelihood is zero

under the model and additionally for the case when likelihood is unknown (such as in

high dimensional data supported on low-dimensional manifolds, such as natural images), or

incalculable. However, in all cases, it is required that we can draw samples from the target

distribution.

The central contribution of this chapter is the powerful non-linear class of Wasserstein

Neural Processes that can learn a variety of distributions when the data are misspecified

under the model, and when the likelihood is unknown or intractable. We do so by replacing

the traditional maximum likelihood loss function with a Wasserstein divergence. We discuss

computationally efficient approximations (including sliced Wasserstein distance [41]) and

evaluate performance in several experimental settings.

5.2 Wasserstein Neural Processes

Our objective in combining Optimal Transport with Neural Processes is to model a desirable

class of functions that are either misspecified, or with computationally intractable likelihood.

We choose to use a CNP (fig 3.1) as our Neural Process architecture because CNPs are the

simplest variant of the NP family and therefore we can illustrate the benefits of Wasserstein

distance as a training regime without myriad ablation tests. Additionally, due to model

simplicity, we can better ablate the performance and assign proper credit to the inclusion

of Wasserstein distance. Extending WNPs to use a latent path, or attention, would be an

interesting direction for future research.

To be precise, we use a parameterized Neural Network of shape and size determined

according to task specifications. The input context x, y points are encoded and aggregated, as

31

in traditional CNPs, using a commutative operation into an rC of fixed length. The desired

target x points (typically the entire set of points) are then conditioned (using concatenation)

and decoded to produce a synthetic set of target y points. At this point, Wasserstein Neural

Processes deviate from traditional NPs. Typically, as mentioned above, the target y likelihood

would be calculated according to the output distribution (which we do as a comparison in

the experiments). However, in our case, the decoded target y points are samples from an

implicitly modeled distribution. As such, since the likelihood may be difficult to calculate, or

non-existent, WNPs use sliced Wasserstein distance as a learning signal. This calculation is

put forth in Algorithm (3).

The sliced Wasserstein distance [41] gives the benefit of scalable distance computation

between two potentially disjoint distributions. We have included the algorithm for imple-

menting the sliced Wasserstein distance in Algorithm (3). With this distance WNPs can

model a larger variety of distributions than traditional NPs as discussed above.

Algorithm 2 Wasserstein Neural Processes.

Require: p0, lower bound percentage of edges to sample as context points. p1, corresponding
upper bound.
Require: θ0, initial encoder parameters. φ0 initial decoder parameters.

1: Let X input data in IRd

2: for t = 0, · · · , nepochs do
3: for xi in X do
4: Sample p← unif(p0, p1)
5: Assign ncontext points ← p · |Target Points|
6: Sparsely Sample xcpi ← xi|ncontext points

and associated ycpi
7: Obtain one-hot encoding of xcpi points and concatenate with ycpi as F cp

8: Encode and aggregate rC ← hθ(F
cp)

9: Decode x̃i ← gφ(F |rC)
10: Calculate Sliced Wasserstein Distance l←W(x̃i, xi)
11: Step Optimizer
12: end for
13: end for

32

Algorithm 3 Sliced Wasserstein Distance

Require: n ∈ [5, 50], number of desired projections.
Require: d, dimension of embedding space.
Require: p, power of desired Wasserstein distance.

1: Let X be the empirical synthetic distribution and Y be samples from the true distribution

2: Sample projections P from Sd i.e., N (size= (n, d)) and normalize using dimension-wise
L2

3: Project X̂ = X · P T

4: Project Ŷ = Y · P T

5: Sort X̂T and Ŷ T

6: Return (X̂T − Ŷ T)p

5.3 Experiments

As discussed in Section (5.1), traditional Neural Processes are limited by their use of the KL

divergence, both explicitly and implicitly. In this section, we demonstrate that Wasserstein

Neural Processes can learn effectively under conditions that cause a traditional NP to fail.

The first two experiments illustrate NPs’ fundamental failing of relying on the likelihood

function for learning. The final experiment shows the ability of WNPs to work on larger

scale tasks.

5.3.1 Misspecified Models - Linear Regression with Uniform Noise

In standard linear regression, parameters β = (β1, β2, · · · , βn)T are estimated in the model

Ŷ = β ~X + b+ η (5.1)

where a stochastic noise model η is used to model disturbances and ~X is our row vector of

data. Traditionally, η ∼ N (µ, σ) for some parameterized Normal distribution. In such a

traditional case, Neural Processes can learn the a conditional distribution over the data x.

This is because all the data has a calculable likelihood under any setting of the parameters.

33

However, consider the case where the noise model is Uniform (e.g., Unif [−1, 1]).

There are now settings for β, b under which the data x would have exactly zero likelihood

(i.e,, any time a single data point falls outside the “tube” of noise). In the worst case, there

may be no setting of the parameters that provides non-zero likelihood. Furthermore, because

of the uniform nature of the noise likelihoods, there are no useful gradients. As we see here,

L(β, b) = Πi∈Ip(yi|xi, β, b) (5.2)

= Πi∈I0.5 · 1(|yi − (βx+ b)| < 1) (5.3)

with I an index into our training set, if even a single data point is outside the uniform density,

the entire likelihood is zero. Therefore, any model based on likelihoods, including NPs, fails

to learn. This is illustrated in fig. 5.1.

However, even if the data likelihood is degenerate, there is still a well-defined notion

of the optimal transport cost between the observed data and the distribution implied by

the model, no matter what setting of parameters is used. Since the Wasserstein distance is

defined independent of likelihood, the WNP model still finds the proper fit of parameters

given the data as seen in (fig. 5.1). This experiment could be analogous to the real world

case where our prior knowledge of the data is fundamentally flawed. This flaw implies that

our model is incorrect and misspecified. For this experiment, we generate synthetic data

from y = 1 · x+ 0 + ε where ε ∼ N (0, 0.5). The sliced Wasserstein distance is calculated as

described in Section 2.2.3 with N = 50. We let h and g be two-layer fully connected Neural

Networks and our rC vector is of size 32 and we use the Adam [35] optimizer with defaults.

5.3.2 Intractable Likelihoods - The Quantile “g-and-κ” Distribution

We now present a second example, with a distribution that is easy to sample from, but for

which the likelihood cannot be tractably computed. The g-and-κ distribution [29, 59] is

34

Figure 5.1: WNP regression results. Left: Failed NP regression with a uniform noise model
Unif [−1, 1] and 500 synthetic data points. The line represents the estimated line of best
fit, while the tube represents the undertainty of the model. Since the model is misspecified,
the likelihood (eq 5.3) is zero and there is no learning signal for parameter updates. Right:
Successful WNP regression with an identical experimental setup. In this case, the model
does not rely on likelihood, instead it makes use of the signal from the sliced Wasserstein
distance which persists even in the misspecified case.

defined for r ∈ (0, 1) and parameters θ = (a, b, g, κ) ∈ [0, 10]4 as

a+ b

(
1 + 0.8

1− exp(−gz(r))

1 + exp(−gz(r))

)
(1 + z(r)2)κz(r) (5.4)

where z(r) refers to the r-th quantile of a standard Normal distribution N (0, 1). It is known

that the density function and likelihood are analytically intractable, making it a perfect test

for WNPs. This model is a standard benchmark for approximate Bayesian computation

methods [57]. Despite the intractability, it is straightforward to sample i.i.d. variables from

this distribution by simply plugging in standard Normals in place of z(r) [6].

We follow the experimental set up in [6] and take θ = (3, 1, 2, 0.5). Which produces a

distribution seen in (fig. 5.2), each pane of the figure represents a time step of WNP training.

Our model can learn this distribution even though the likelihood is analytically intractable.

Additionally, we let h and g be two-layer fully connected neural networks which increases

the capacity of the model. The rC embedding vector is the same size (32 dimensional). In

this case, we use a cyclic learning rate with the base learning rate 1e−3 and the max learning

rate 1e−2, which are the default values in Pytorch. We found that in some cases, our model

would output a linearly translated empirical distribution, and cycling the learning rate would

35

Figure 5.2: WNP g-and-κ distribution results. Top left: Initialization of learned distribution.
It would be impossible to calculate the likelihood in this case for traditional NPs both because
the model is misspecified and because the likelihood is computationally intractable. Top
right: Beginning of the learning process. The output of the WNP is completely disjoint
from the sampled g-and-κ distribution. Bottom left: Part way through the learning process
(approximately 500 steps) we see the WNP is quickly able to achieve a good fit. Bottom
right: Final fit of g-and-κ distribution where WNP learned to model the distribution without
relying on the likelihood calculation

finish the optimization process by properly translating the model to achieve the desired fit.

We hypothesize this as a function of the g-and-κ topology and leave it as an area for future

exploration as it is beyond the scope of this work.

Due to the fact that the likelihood is intractable, if one wished to use this distribution

as the model output of a Neural Process, it would be as impossible to train as in the uniform

noise model regression task. This is due to the fact, as mentioned above, that standard

Neural Processes rely on maximum likelihood as a learning signal. Since Wasserstein Neural

Processes rely solely on the divergence between two empirical distributions, they can learn a

conditional g-and-κ distribution.

36

5.3.3 CelebA tiles as super pixels

We now present our final experiment on high-dimensional image data. The purpose of this

experiment is to illustrate the ability of WNP to model higher-dimensional distributions

where the likelihood might be difficult to calculate or potentially meaningless. The experiment

is run on the CelebA dataset.

To distinguish between a large class of prior work and our contribution, we highlight

a distinction between common candidate objective functions and the true data distribution.

Many frameworks for image prediction, including standard Neural Processes implicitly, involve

reconstruction-based loss functions that are usually defined as ‖y − ŷ‖. These loss functions

compare a target y with the model’s output ŷ using pixel-wise MSE — but this is known to

perform poorly in many cases [36], including translations and brightness variations. More

generally, it completely ignores valuable higher-order information in images: pixel intensities

are neither independent nor do they share the same variance. Additionally, since images

are typically supported on low-dimensional manifolds, the Gaussian assumption of MSE is

potentially problematic.

Put simply, pixel-wise losses imply false assumptions and results in a different objective

than the one we would truly like to minimize. These false assumptions help explain why

(for example) generative image models such as VAEs (based on reconstruction error) result

in blurry reconstructions[18, 19, 34], while models such as Wasserstein GANs [1] (based on

Wasserstein distances) result in much sharper reconstructions.

Neural Processes use Gaussian distributions over individual pixels. Predictably, this

results in blurry predictions, seen in [18, 19, 34]. Analogously to the difference between GANs

and VAEs, if we extend these experiments slightly, where instead of using pixel values as

context points, we take large tiles of the image as context points, we might expect that we

would see sharper reconstructions from WNPs as compared to NPs.

We test this by treating image completion as a high-dimensional regression task.

32× 32 images are broken into 4× 4 tiles; these tiles are then randomly subsampled. The

37

Figure 5.3: On the left: results from Neural Processes. The left-most column shows the
sparse observations; the middle column shows ground truth; the right column shows the NP
reconstruction. On the right: results for WNPs. See text for discussion.

X inputs are the tile coordinates; the Y outputs are the associated pixels. Given a set of

between 4 – 16 tiles, the WNP must predict the remainder of the pixels by predicting entire

tiles. The Neural Process is trained on the same data, using the same neural network; the

only difference is the loss function.

5.3.4 Discussion

The results of our Celeb-A experiment are shown in (fig. 5.3). Here, the results are not what

we expected: traditional Neural Processes and Wasserstein Neural Processes learn similarly

blurry output when using tiles as context points instead of pixels. While neither of the images

are as high quality as recent GAN work [30], this experiment shows that WNP still can

capture background, facial structure, color, as can the traditional NP trained with maximum

likelihood.

38

Chapter 6

Discussion and Future Work

This thesis has explored two specific extensions to the neural process framework.

Neural processes allow the learning of a distribution of functions over a set of context and

target points. Extending those to graph valued data and using optimal transport expands

the class of functions that can be learned.

6.1 Graph Neural Processes

This thesis has introduced Graph Neural Processes, a model that learns a conditional

distribution while operating on graph structured data. This model has the capacity to

generate uncertainty estimates over outputs, and encode prior knowledge about input data

distributions. Additionally, GNP’s ability on edge imputation and given potential areas for

future exploration was demonstrated.

While the encoder and decoder architectures can be extended significantly by including

work from modern deep learning architectural design, this work is a step towards building

Bayesian neural networks on arbitrarily graph structured inputs. Additionally, it encourages

the learning of abstractions about these structures. In the future, we wish to explore the use

of GNPs to inform high-level reasoning and abstraction about fundamentally relational data.

6.2 Wasserstein Neural Processes

This thesis has also explored a synthesis of Neural Processes and Optimal Transport. It was

shown that there are desirable classes of functions which Neural Processes either struggle to

39

learn, or cannot learn, but which can be learned by Wasserstein Neural Processes. These

WNPs use Wasserstein distance in place of the intrinsic KL divergence used in maximum

likelihood and can be tractably implemented using (for example) sliced approximations.

Maximum likelihood fails to learn in the case of misspecified models and likelihoods that

either don’t exist, or are computationally intractable. As a concluding thought, we note

that our technical strategy in developing this model was to replace a maximum-likelihood

objective with a Wasserstein based objective. This raises the intriguing question: can all

probabilistic models based on maximum-likelihood be reformulated in terms of Wasserstein

divergence? We leave this exciting direction for future work.

40

References

[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein Generative Adver-

sarial Networks. In International Conference on Machine Learning, 2017.

[2] Tom Auld, Andrew W Moore, and Stephen F Gull. Bayesian neural networks for internet

traffic classification. IEEE Transactions on Neural Networks, 18(1):223–239, 2007.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation

by jointly learning to align and translate. In International Conference on Learning

Representations, 2015.

[4] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interac-

tion networks for learning about objects, relations and physics. In Neural Information

Processing Systems, pages 4502–4510, 2016.

[5] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius

Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan

Faulkner, Caglar Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George

Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria Langston, Chris Dyer,

Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li,

and Razvan Pascanu. Relational inductive biases, deep learning, and graph networks.

arXiv:1806.01261, 2018.

[6] Espen Bernton, Pierre E Jacob, Mathieu Gerber, and Christian P Robert. Approximate

bayesian computation with the Wasserstein distance. Journal of the Royal Statistical

Society: Series B (Statistical Methodology), 2019.

[7] Nicolas Bonnotte. Unidimensional and evolution methods for optimal transportation.

PhD Thesis, 2013.

[8] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana

Yakhnenko. Translating embeddings for modeling multi-relational data. In Neural

Information Processing Systems, pages 2787–2795, 2013.

41

[9] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.

Geometric deep learning: going beyond euclidean data. IEEE, 34(4):18–42, 2017.

[10] Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. A

compositional object-based approach to learning physical dynamics. arXiv:1612.00341,

2016.

[11] Fan RK Chung and Fan Chung Graham. Spectral graph theory. Number 92. American

Mathematical Soc., 1997.

[12] Zhiyong Cui, Kristian Henrickson, Ruimin Ke, and Yinhai Wang. Traffic graph convo-

lutional recurrent neural network: A deep learning framework for network-scale traffic

learning and forecasting. IEEE Transactions on Intelligent Transportation Systems,

2019.

[13] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal trans-

port. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.

Weinberger, editors, Advances in Neural Information Processing Systems 26, pages

2292–2300. Curran Associates, Inc., 2013. URL http://papers.nips.cc/paper/

4927-sinkhorn-distances-lightspeed-computation-of-optimal-transport.pdf.

[14] Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman,

and Corwin Hansch. Structure-activity relationship of mutagenic aromatic and heteroaro-

matic nitro compounds. correlation with molecular orbital energies and hydrophobicity.

Journal of Medicinal Chemistry, 34(2):786–797, 1991.

[15] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy

Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs

for learning molecular fingerprints. In Neural Information Processing Systems, pages

2224–2232, 2015.

[16] National Center for Advancing Translation Services. Tox21 data challenge, 2014. URL

https://tripod.nih.gov/tox21/challenge/index.jsp.

[17] Marco Cuturi Gabriel Peyré. Computational Optimal Transport. 2018. URL https:

//arxiv.org/pdf/1803.00567.pdf.

[18] M Garnelo, D Rosenbaum, CJ Maddison, T Ramalho, D Saxton, M Shanahan, YW Teh,

DJ Rezende, and SM. Eslami. Conditional neural processes. International Conference

of Machine Learning, 2018.

42

http://papers.nips.cc/paper/4927-sinkhorn-distances-lightspeed-computation-of-optimal-transport.pdf
http://papers.nips.cc/paper/4927-sinkhorn-distances-lightspeed-computation-of-optimal-transport.pdf
https://tripod.nih.gov/tox21/challenge/index.jsp
https://arxiv.org/pdf/1803.00567.pdf
https://arxiv.org/pdf/1803.00567.pdf

[19] Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende,

SM Eslami, and Yee Whye Teh. Neural processes. In International Conference of Machine

Learning Workshop on Theoretical Foundations and Applications of Deep Generative

Models, 2018.

[20] Aude Genevay, Gabriel Peyre, and Marco Cuturi. Learning Generative Models with

Sinkhorn Divergences. In International Conference on Artificial Intelligence and Statistics,

2018.

[21] M. Gori, G. Monfardini, and F Scarselli. A new model for learning in graph domains.

IJCNN, 2:729–734, 2005.

[22] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C

Courville. Improved training of Wasserstein GANs. In Advances in Neural Information

Processing Systems, 2017.

[23] Paul R Halmos. Measure Theory, volume 18. Springer, 2013.

[24] Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, and Yuji Matsumoto. Knowl-

edge transfer for out-of-knowledge-base entities: a graph neural network approach. In

Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017.

[25] Christoph Helma, Ross D. King, Stefan Kramer, and Ashwin Srinivasan. The predictive

toxicology challenge 2000–2001. Bioinformatics, 17(1):107–108, 2001.

[26] Avinash Hindupur. Gan zoo. URL https://github.com/hindupuravinash/

the-gan-zoo.

[27] Yedid Hoshen. Vain: Attentional multi-agent predictive modeling. In Neural Information

Processing Systems, pages 2701–2711, 2017.

[28] Mark Huisman. Imputation of missing network data: Some simple procedures. Journal

of Social Structure, 10, 01 2009. doi: 10.1007/978-1-4614-6170-8 394.

[29] Martinez Jorge and Iglewicz Boris. Some properties of the Tukey g and h family of

distributions. Communications in Statistics-Theory and Methods, 13(3):353–369, 1984.

[30] Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Architecture

for Generative Adversarial Networks. In Conference on Computer Vision and Pattern

Recognition, 2019.

43

https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo

[31] Jeroen Kazius, Ross McGuire, and Roberta Bursi. Derivation and validation of toxi-

cophores for mutagenicity prediction. Journal of Medicinal Chemistry, 48(1):312–320,

2005.

[32] Charles Kemp and Joshua B Tenenbaum. The discovery of structural form. PNAS, 105

(31):10687–10692, 2008.

[33] Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion

Neumann. Benchmark data sets for graph kernels, 2016. URL http://graphkernels.

cs.tu-dortmund.de.

[34] Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosen-

baum, Oriol Vinyals, and Yee Whye Teh. Attentive neural processes. In ICLR, 2019.

URL https://openreview.net/forum?id=SkE6PjC9KX.

[35] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In

3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,

USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/

abs/1412.6980.

[36] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In International

Conference on Learning Representations, 2014.

[37] T Kipf, E Fetaya, K-C Wang, M Welling, R Zemel, et al. Neural relational inference for

interacting systems. Proceedings of Machine Learning Research, 2018.

[38] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional

networks. arXiv:1609.02907, 2016.

[39] Soheil Kolouri, Yang Zou, and Gustavo K Rohde. Sliced Wasserstein kernels for

probability distributions. In Conference on Computer Vision and Pattern Recognition,

2016.

[40] Soheil Kolouri, Charles E. Martin, and Gustavo K. Rohde. Sliced-Wasserstein autoen-

coder: An embarrassingly simple generative model. CoRR, abs/1804.01947, 2018. URL

http://arxiv.org/abs/1804.01947.

[41] Soheil Kolouri, Kimia Nadjahi, Umut Simsekli, Roland Badeau, and Gustavo Rohde.

Generalized sliced Wasserstein distances. In Advances in Neural Information Processing

Systems, 2019.

44

http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de
https://openreview.net/forum?id=SkE6PjC9KX
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1804.01947

[42] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph sequence neural networks.

ICLR, 2016.

[43] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent

neural network: Data-driven traffic forecasting. arXiv:1707.01926, 2017.

[44] Huidong Liu, Xianfeng Gu, and Dimitris Samaras. A two-step computation of the exact

GAN Wasserstein distance. In International Conference of Machine Learning, 2018.

[45] Christos Louizos, Xiahan Shi, Klamer Schutte, and Max Welling. The functional neural

process. In Advances in Neural Information Processing Systems, 2019.

[46] Pierre Mahé, Liva Ralaivola, Véronique Stoven, and Jean-Philippe Vert. The pharma-

cophore kernel for virtual screening with support vector machines. Journal of Chemical

Information and Modeling, 46(5):2003–2014, 2006.

[47] Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. Histoire de

l’Académie royale des sciences de Paris, 1781.

[48] Daniel Oñoro-Rubio, Mathias Niepert, Alberto Garćıa-Durán, Roberto González, and

Roberto J López-Sastre. Representation learning for visual-relational knowledge graphs.

arXiv:1709.02314, 2017.

[49] Shenghao Qin, Jiacheng Zhu, Jimmy Qin, Wenshuo Wang, and Ding Zhao. Recurrent

attentive neural process for sequential data. arXiv preprint arXiv:1910.09323, 2019.

[50] David Raposo, Adam Santoro, David Barrett, Razvan Pascanu, Timothy Lillicrap,

and Peter Battaglia. Discovering objects and their relations from entangled scene

representations. arXiv:1702.05068, 2017.

[51] Kaspar Riesen and Horst Bunke. Iam graph database repository for graph based pattern

recognition and machine learning. In Joint IAPR International Workshops on (SPR)

and (SSPR), pages 287–297. Springer, 2008.

[52] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin

Riedmiller, Raia Hadsell, and Peter Battaglia. Graph Networks as Learnable Physics

Engines for Inference and Control. In International Conference on Machine Learning,

2018.

[53] Filippo Santambrogio. Optimal transport for applied mathematicians, 2015.

45

[54] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pas-

canu, Peter Battaglia, and Timothy Lillicrap. A simple neural network module for

relational reasoning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,

S. Vishwanathan, and R. Garnett, editors, Neural Information Processing Systems,

pages 4967–4976. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/

7082-a-simple-neural-network-module-for-relational-reasoning.pdf.

[55] Victor Garcia Satorras and Joan Bruna Estrach. Few-shot learning with graph neural

networks. In ICLR, 2018. URL https://openreview.net/forum?id=BJj6qGbRW.

[56] F. Scarselli, S. L. Yong, M. Gori, M. abd Hagenbuchner, A. C. Tsoi, and M. Mag-

gini. Graph neural networks for ranking web pages. IEEE/WIC/ACM International

Conference on Web Intelligence, pages 666–672, 2005.

[57] Scott A Sisson, Yanan Fan, and Mark Beaumont. Handbook of approximate Bayesian

computation. Chapman and Hall/CRC, 2018.

[58] Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication with

backpropagation. In Neural Information Processing Systems, pages 2244–2252, 2016.

[59] J.W. Tukey. Modern techniques in data analysis. In Proceedings of the NSF-Sponsored

Regional Research Conference, volume 7, Dartmouth, Massachusetts. Southern Mas-

sachusetts University., 1977.

[60] Sjoerd van Steenkiste, Michael Chang, Klaus Greff, and Jürgen Schmidhuber. Rela-

tional neural expectation maximization: Unsupervised discovery of objects and their

interactions. arXiv:1802.10353, 2018.

[61] C. Villani. Optimal Transport: Old and New. Grundlehren der mathematischen

Wissenschaften. Springer Berlin Heidelberg, 2008. ISBN 9783540710509. URL

https://books.google.com/books?id=hV8o5R7_5tkC.

[62] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M

Solomon. Dynamic graph CNN for learning on point clouds. ACM Transactions on

Graphics (TOG), 38(5), 2019.

[63] Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan Pascanu,

and Andrea Tacchetti. Visual interaction networks: Learning a physics simulator from

video. In Neural Information Processing Systems, pages 4539–4547, 2017.

46

http://papers.nips.cc/paper/7082-a-simple-neural-network-module-for-relational-reasoning.pdf
http://papers.nips.cc/paper/7082-a-simple-neural-network-module-for-relational-reasoning.pdf
https://openreview.net/forum?id=BJj6qGbRW
https://books.google.com/books?id=hV8o5R7_5tkC

[64] Wikipedia contributors. Transportation theory (mathematics) — Wikipedia, the free en-

cyclopedia, 2019. URL https://en.wikipedia.org/wiki/Transportation_theory_

(mathematics). [Online; accessed 11-Nov-2019].

[65] Yingxue Zhang, Soumyasundar Pal, Mark Coates, and Deniz Ustebay. Bayesian graph

convolutional neural networks for semi-supervised classification. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 33, 2019.

[66] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and

Maosong Sun. Graph neural networks: A review of methods and applications.

https://arxiv.org/abs/1812.08434, 2019.

47

https://en.wikipedia.org/wiki/Transportation_theory_(mathematics)
https://en.wikipedia.org/wiki/Transportation_theory_(mathematics)

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	2 Background
	2.1 Metrics and Measures
	2.2 Optimal Transport
	2.2.1 Wasserstein Distance
	2.2.2 Sinkhorn
	2.2.3 Sliced Wasserstein Distance

	3 Neural Processes
	3.1 Conditional Neural Processes
	3.2 Neural Process
	3.3 Extensions

	4 Graph Neural Processes
	4.1 Introduction
	4.2 Background
	4.2.1 Graph Structured Data
	4.2.2 Graph Neural Networks

	4.3 Related Work
	4.3.1 Edge Imputation
	4.3.2 Bayesian Deep Learning

	4.4 Model and Training
	4.5 Applications
	4.5.1 Results

	4.6 Areas for Further Exploration

	5 Wasserstein Neural Processes
	5.1 Introduction
	5.2 Wasserstein Neural Processes
	5.3 Experiments
	5.3.1 Misspecified Models - Linear Regression with Uniform Noise
	5.3.2 Intractable Likelihoods - The Quantile ``g-and-'' Distribution
	5.3.3 CelebA tiles as super pixels
	5.3.4 Discussion

	6 Discussion and Future Work
	6.1 Graph Neural Processes
	6.2 Wasserstein Neural Processes

	References

